Raman study of the polarizing forces promoting catalysis in 4-chlorobenzoate-CoA dehalogenase.

نویسندگان

  • J Clarkson
  • P J Tonge
  • K L Taylor
  • D Dunaway-Mariano
  • P R Carey
چکیده

The enzyme 4-chlorobenzoate-CoA dehalogenase catalyzes the hydrolysis of 4-chlorobenzoate-CoA (4-CBA-CoA) to 4-hydroxybenzoyl-CoA (4-HBA-CoA). In order to facilitate electrophilic catalysis, the dehalogenase utilizes a strong polarizing interaction between the active site residues and the benzoyl portion of the substrate [Taylor, K. L., et al. (1995) Biochemistry 34, 13881]. As a result of this interaction, the normal modes of the benzoyl moiety of the bound 4-HBA-CoA undergo a drastic rearrangement as shown by Raman spectroscopy. Here, we present Raman difference spectroscopic data on the product-enzyme complex where the product's benzoyl carbonyl is labeled with 18O (C=18O) or 13C (13C=O) or where the 4-OH group is labeled with 18O. The data demonstrate that the carbonyl group participates in the most intense normal modes occurring in the Raman spectrum in the 1520-1560 cm-1 region. The substrate analog 4-methylbenzoate-CoA (4-MeBA-CoA) has also been characterized by Raman difference spectroscopy in its free form and bound to the dehalogenase. Upon binding, the 4-MeBA-CoA shows evidence of polarization within the delocalized pi-electrons, but to a lesser extent compared to that seen for the product. The use of 4-MeBA-CoA labeled with 18O at the carbonyl enables us to estimate the degree of electron polarization within the C=O group of the bound 4-MeBA-CoA. The C=O stretching frequency occurs near 1663 cm-1 in non-hydrogen bonding solvents such as CCl4, near 1650 cm-1 in aqueous solution, and near 1610 cm-1 in the active site of dehalogenase. From model studies, we can estimate that in the active site the carbonyl group behaves as though it is being polarized by hydrogen bonds approximately 57 kJ mol-1 in strength. Major contributions to this polarization come from hydrogen bonds from the peptide NHs of Gly114 and Phe64. However, an additional contribution, which may account for up to half of the observed shift in nuC=O, originates in the electrostatic field due to the alpha-helix dipole from residues 121-114. The helix which terminates at Gly114, near the C=O group of the bound benzoyl, provides a dipolar electrostatic component which contributes to the polarization of the C=O bond and to the polarization of the entire benzoyl moiety. The effect of both the helix dipole and the hydrogen bonds on the C=O is a "pull" of electrons onto the carbonyl oxygen, which, in turn, polarizes the electron distribution within the benzoyl pi-electron system. The ability of these two factors to polarize the electrons within the benzoyl moiety is increased by the environment about the benzoyl ring; it is surrounded by hydrophobic residues which provide a low-dielectric constant microenvironment. Electron polarization promotes catalysis by reducing electron density at the C4 position of the benzoyl ring, thereby assisting attack by the side chain of Asp145. An FTIR study on the model compound 4-methylbenzoyl S-ethyl thioester, binding to a number of hydrogen bonding donors in CCl4, is described and is used to relate the observed shift of the C=O stretching mode of 4-MeBA-CoA in the active site to the hydrogen bonding strength value. Since the shift of the C=O frequency upon binding is due to hydrogen bonding and helix dipole effects, we refer to this bonding strength as the effective hydrogen bonding strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.

4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA to 4-hydroxybenzoyl-CoA by using an active site aspartate as the nucleophile. Formation of the corresponding Meisenheimer complex (EMc) is followed by chloride ion expulsion which forms the arylated intermediate (EAr). This is then hydrolyzed to the product. In this paper, we explore the rel...

متن کامل

Interchange of catalytic activity within the 2-enoyl-coenzyme A hydratase/isomerase superfamily based on a common active site template.

The structures and chemical pathways associated with the members of the 2-enoyl-CoA hydratase/isomerase enzyme superfamily are compared to show that a common active site design provides the members of this family with a CoA binding site, an expandable acyl binding pocket, an oxyanion hole for binding/polarizing the thioester C=O, and multiple active site stations for the positioning of acidic a...

متن کامل

A QM/MM study of a nucleophilic aromatic substitution reaction catalyzed by 4-chlorobenzoyl-CoA dehalogenase.

Calculated using a QM/MM method, the free energy profile for the conversion of 4-chlorobenzoate to 4-hydroxybenzoate catalyzed by 4-chlorobenzoyl-CoA dehalogenase indicates the existence of a stable Meisenheimer complex.

متن کامل

Evidence for electrophilic catalysis in the 4-chlorobenzoyl-CoA dehalogenase reaction: UV, Raman, and 13C-NMR spectral studies of dehalogenase complexes of benzoyl-CoA adducts.

This paper reports on the mechanism of substrate activation by the enzyme 4-chlorobenzoyl coenzyme A dehalogenase. This enzyme catalyzes the hydrolytic dehalogenation of 4-chlorobenzoyl coenzyme A (4-CBA-CoA) to form 4-hydroxybenzoyl coenzyme A (4-HBA-CoA). The mechanism of this reaction is known to involve attack of an active site carboxylate (Asp or Glu side chain) at C(4) of the substrate be...

متن کامل

Histidine 90 function in 4-chlorobenzoyl-coenzyme a dehalogenase catalysis.

4-chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA by attack of Asp145 on the C4 of the substrate benzoyl ring to form a Meisenheimer intermediate (EMc), followed by expulsion of chloride ion to form an arylated enzyme intermediate (EAr) and, finally, ester hydrolysis in EAr to form 4-hydroxybenzoyl-CoA (4-HBA-CoA). This study examines the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 36 33  شماره 

صفحات  -

تاریخ انتشار 1997